This is default featured slide 1 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 2 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 3 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

Rabu, 22 Mei 2024

MESH, THEVENIN DAN NODAL

MESH, THEVENIN, DAN NODAL



MODUL III

MESH, THEVENIN, DAN NODAL


1. Foto Hardware [Kembali]

a. Mesh Current

b. Thevenin Teorema






c. Nodal





2. Prosedur Percobaan [Kembali]

A. Mesh Current

a. Susun rangkaian seperti gambar di bawah

b. Dengan menggunakan ohmmeter, ukur resistansi dari masing-masing resistor dan catat nilainya pada tabel

c. Tutup S1 dan nyalakan power supply. Atur tegangan output dari power supply 15 V. Cek  nilai ini dan pertahankan tegangan selama percobaan

d. Ukur tegangan yang melintasi masing-masing resistor dan catat hasilnya pada tabel

e. Gunakan Hukum Ohm dan nilai resistansi terukur untuk menghitung besar arus yang melewati masing-masing resistor. Catat hasilnya pada Tabel

f. Gunakan nilai terbaca pada resistor dan tiga mesh pada gambar untuk menghitung arus mesh I1, I2, dan I3. Catat hasilnya pada tabel. Buat semua perhitungannya

g. Dengan arus mesh yang telah didapatkan, hitung arus yang melewati Rdan R4.

B. Thevenin's Theorema

a. Susun rangkaian seperti Gambar 1.a 

b. Gunakan RL 330 ohm. Tutup S2 dan S1, hidupkan power. Atur nilai Vps pada 15 V, ukur arus yang melintasi resistor beban RL (IL) catat nilai ini pada tabel 1 kolom IL rangkaian asli.

c. Buka beban RL, buka S2. Ukur tegangan yang melintasi BC (VTh). Catat nilai yang didapat pada tabel 1 kolom VTh terukur.

d. Dalam kondisi V off, kemudian hubung singkat AD untuk mengukur resistansi pada BC, yaitu RTh. Catat nilai yang didapat pada tabel 1 kolom RTh Ekivalen Thevenin.

e. Ulangi langkah a sampai d untuk beban 1000 dan 3300 ohm.

f. Susun rangkaian seperti gambar 1.b. Tutup S1, atur posisi power supply sehingga Vps = VTh, dan resistansi yang melintasi potensiometer sama dengan Rth.

g. Ukur IL dan catat nilainya dalam tabel 1 kolom ekivalen thevenin, lalu matikan power supply.

h. Dengan menggunakan nilai VPS, R1, R2, R3, dan R4 hitung nilai VTh dari gambar 1.a  kemudian catat jawaban dalam tabel 1 kolom VTh terhitung.

i. Hitung RTh seperti pada gambar 1.a dengan menggunakan nilai resistansi yang terukur pada R1, R2, R3, dan R4, catat jawaban dalam tabel 1 kolom RTh terhitung.

j. Gunakan nilai VTh dan RTh terhitung dari langkah f dan g untuk menghitung nilai IL, catat jawaban dalam tabel 1 kolom IL terhitung.

C. Nodal Analysis

a. Buatlah rangkaian seperti gambar rangkaian simulasi di bawah

b. Pilih resistor dengan resistansi sesuai dengan kondisi

c. ukur tegangan dan arus memakai voltmeter dan amperemeter dan catat pada jurnal  percobaan.


 3. Simulasi Rangkaian dan Prinsip kerja [Kembali]

a. Mesh Current


Prinsip kerja:

Metode arus Mesh merupakan prosedur langsung untuk menentukan arus pada setiap resistor dengan menggunakan persamaan simultan. Langkah pertamanya adalah membuat loop tertutup (disebut juga mesh) pada rangkaian. Loop tersebut tidak harus memiliki sumber tegangan, tetapi setiap sumber tegangan yang ada harus dimasukkan ke dalam loop. Loop haruslah meliputi seluruh resistor dan sumber tegangan. Dengan arus Mesh, dapat ditulis persamaan Kirchoff’s Voltage Law untuk setiap loop.

b. Thevenin Teorema


Prinsip Kerja:

Teorema Thevenin merupakan salah satu metode penyelesaian rangkaian listrik kompleks menjadi rangkaian sederhana yang terdiri atas tegangan thevenin dan hambatan thevenin yang terhubung secara seri. Beberapa aturan dalam menetapkan Vth dan Rth, yaitu:

1. Vth adalah tegangan yang terlihat melintasi terminal beban. Dimana pada rangkaian asli, beban resistansinya dilepas (open circuit). Jika dilakukan pengukuran, maka diletakkan multimeter pada titik open circuit tersebut.

2. Rth adalah resistansi yang terlihat dari terminal pada saat beban dilepas (open circuit) dan sumber tegangan yang dihubung singkat (short circuit).

 c. Nodal Analysis


Prinsip kerja : 

Analisis node adalah metode untuk menganalisis rangkaian listrik dengan menggunakan hukum arus Kirchhoff (KCL), yaitu jumlah arus yang masuk dan keluar dari suatu titik percabangan sama dengan nol. Analisis node membutuhkan penentuan simpul referensi (ground), yang merupakan titik acuan untuk mengukur tegangan node di rangkaian. Tegangan node adalah perbedaan potensial antara suatu simpul dengan simpul referensi.

Analisis node menghasilkan persamaan tegangan node independen sebanyak n-1, di mana n adalah jumlah simpul termasuk simpul referensi. Persamaan-persamaan ini dapat diselesaikan dengan metode eliminasi, substitusi, atau matriks untuk mendapatkan nilai tegangan node di setiap simpul.

4. Video Demo [Kembali]



5. Kondisi [Kembali]

A. R1, R2, R3, R4, R5, R6= 100 ohm ; RL = 1k ohm

B. -

C. A. R1, R2, R3, R4, R5, R6= 560 ohm ; RL = 620 ohm


6. Video Penjelasan [Kembali]

A. Mesh Analysis


B. Thevenin Teorema

C. Nodal Analysis


7. Download File [Kembali]

Download Rangkaian Mesh Disini

Download Rangkaian Thevenin Disini

Download Rangkaian Nodal Disini

Download Video Mesh Disini

Download Video Thevenin Disini

Download Video Nodal Disini

Download Tugas Pendahuluan Disini

Download Laporan Akhir Disini





 

HUKUM KIRCHOFF VOLTAGE DAN CURRENT DIVIDER

HUKUM KIRCHOFF VOLTAGE DAN CURRENT DIVIDER



MODUL III

HUKUM KIRCHOFF VOLTAGE DAN CURRENT DIVIDER


1. Foto Hardware [Kembali]

a. Hukum Kirchoff




b. Voltage & current divider





2. Prosedur Percobaan [Kembali]

a. Hukum Kirchoff

a. Buatlah rangkaian seperti gambar rangkaian simulasi di bawah

b. Pilih resistor dengan resistansi sesuai dengan kondisi

c. Ukur tegangan dan arus memakai voltmeter dan amperemeter dan catat pada jurnal  percobaan.


b. Voltage & Current Divider

a. Buatlah rangkaian seperti gambar rangkaian simulasi di bawah

b. Pilih resistor dengan resistansi sesuai dengan kondisi

c. Ukur tegangan dan arus memakai voltmeter dan amperemeter dan catat pada jurnal  percobaan.


3. Rangkaian Simulasi dan Prinsip Kerja [Kembali]

a. Hukum Kirchoff


Prinsip kerja : 

Hukum I Kirchoff:

"Jumlah kuat arus listrik yang masuk ke suatu titik cabang akan sama dengan  jumlah kuat arus listrik yang meninggalkan titik itu."

Hukum II Kirchoff:

"Jumlah aljabar beda potensial (tegangan) pada suatu rangkaian tertutup adalah sama dengan nol."


b. Voltage & Current Divider


Prinsip Kerja:

Resistansi Total (Rtotal): Rangkaian pembagi tegangan terdiri dari dua atau lebih resistor yang terhubung. Resistansi total dari rangkaian dapat dihitung dengan menggabungkan resistansi-resistansi tersebut sesuai dengan koneksi (seri atau paralel).

Rangkaian pembagi arus menggunakan sifat rangkaian paralel, yaitu jumlah arus yang masuk sama dengan jumlah arus yang keluar dari titik percabangan. Rangkaian pembagi arus membagi arus total yang masuk ke dalam cabang-cabang rangkaian sesuai dengan perbandingan hambatan pada masing-masing cabang. Rumus untuk menghitung arus pada cabang ke-n adalah:

a. Ra = 560, Rb = 680, Rc = 750

b. Ra = 1k, Rb = 1k, Rc = 10k

 



7. Download File [Kembali]

    Download File Rangkaian HK Kirchoff Disini

    Download File Rangkaian Voltage&Current Divider Disini

    Download Video HK Kirchoff Disini

    Download Video Voltage&Current Divider Disini

   Datasheet Baterai [klik]

    Datasheet Amperemeter [klik]

    Datasheet Voltmeter [klik]

    Datasheet Resistor [klik]

    Download Tugas Pendahuluan Disini

    Download Laporan Akhir Disini
    









HUKUM OHM

HUKUM OHM



MODUL III

HUKUM OHM


1. Foto Hardware [Kembali]





2. Prosedur Percobaan [Kembali]

a. Buatlah rangkaian seperti gambar rangkaian simulasi di bawah

b. Pilih resistor dengan resistansi sesuai dengan kondisi

c. ukur tegangan dan arus memakai voltmeter dan amperemeter dan catat pada jurnal  percobaan.


3. Rangkaian Simulasi dan Prinsip Kerja [Kembali]



Prinsip kerja : 

Kuat arus yang mengalir dalam suatu penghantar atau hambatan besarnya sebanding dengan beda potensial atau tegangan antara ujung-ujung penghantar tersebut. Pernyataan itu bisa dituliskan sebagai berikut yaitu I ∞ V.”

Hukum Ohm dirumuskan oleh fisikawan Jerman Georg Simon Ohm pada tahun 1827 dan dinyatakan dalam persamaan matematis sederhana:

V = IR

V adalah tegangan dalam volt (V),

I adalah arus dalam ampere (A), dan

R adalah resistansi dalam ohm (Ω).


4. Video Demo [Kembali]



5. Kondisi [Kembali]

A. Rx = 560 ohm


6. Video Penjelasan [Kembali]

Video penjelasan hukum ohm



7. Download File [Kembali]

   Download File Rangkaian Disini

   Download Video Rangkaian Disini

   Datasheet Baterai [klik]

    Datasheet Amperemeter [klik]

    Datasheet Voltmeter [klik]

    Datasheet Resistor [klik]

   Download File Tugas Pendahuluan Disini

   Download Laporan Akhir Disini






MODUL III


MODUL 3




MODUL 3

HUKUM OHM, HUKUM KIRCHOFF, VOLTAGE & CURRENT DIVIDER, MESH, NODAL, THEVENIN


1. Pendahuluan [Kembali]

Hukum Ohm menyatakan bahwa arus listrik yang mengalir pada suatu penghantar akan sebanding dengan tegangan yang didapatkannya, tetapi berbanding terbalik dengan hambatan. Hukum Ohm merupakan salah satu ilmu dasar elektronika yang kerap ditemui dalam kehidupan sehari-hari.  

Hukum Kirchoff pada dasarnya membahas tentang konduksi listrik yang berkaitan dengan hukum konservasi energi. Dengan begitu, hukum Kirchoff sangat penting dipelajari sebagai dasar untuk memahami arus dan tegangan dalam rangkaian listrik, terutama rangkaian listrik tertutup.

Rangkaian pembagi arus (current divider) dan rangkaian pembagi tegangan(voltage divider) adalah prinsip dasar agar memahami tentang rangkaian elektronika. Pada perkuliahan biasanya ilmu ini diajarkan pada saat mata kuliah elektronika dasar.

Hukum Kirchoff merupakan salah satu hukum dalam ilmu Fisika yang mempelajari soal listrik dan kelistrikan. Hukum ini terbagi menjadi hukum Kirchoff 1 dan 2 yang sepenuhnya membahas tentang konduksi listrik.

Baca artikel detikedu, "Hukum Kirchoff Adalah? Begini Rumus dan Penerapannya dalam Kehidupan" selengkapnya https://www.detik.com/edu/detikpedia/d-6790210/hukum-kirchoff-adalah-begini-rumus-dan-penerapannya-dalam-kehidupan.

Download Apps Detikcom Sekarang https://apps.detik.com/detik/

 Analisis mesh adalah teknik untuk menghitung arus pada rangkaian planar di setiap titik sepanjang rangkaian. Analisis node memperkirakan tegangan antar node dalam rangkaian listrik menggunakan arus cabang

 Analisis node mudah dilakukan bila pencatunya berupa sumber arus apabila pada rangkaian tersebut terdapat sumber tegangan, maka sumber tegangan tersebut diperlukan sebagai supernode, yaitu menganggap sumber tegangan tersebut diangap sebagai satu nod

Teorema Thevenin adalah salah satu teorema yang berguna untuk analisis rangkaian listrik.Teorema Thevenin menunjukkan bahwa keseluruhan rangkaian listrik tertentu yang tidak memiliki beban listrik, dapat diganti dengan rangkaian ekuivalen yang hanya mengandung sumber tegangan listrik independen dengan sebuah resistor yang terhubung secara seri, sedemikian hingga hubungan antara arus listrik dan tegangan listrik pada beban listrik tidak berubah.

 

2. Tujuan [Kembali]

1. Dapat memahami prinsip Hukum Ohm.

2. Dapat memahami prinsip Hukum Kirchoff.

3. Dapat memahami cara kerja voltage dan current divider.

4. Dapat membuktikan perhitungan arus dengan menggunakan Teorema Mesh.

5. Dapat membuktikan perhitungan tegangan dengan menggunakan Analisis Nodal.

6 Dapat menentukan tegangan ekivalen Thevenin dan resistansi Thevenin dari rangkaian DC dengan satu sumber.

3. Alat dan Bahan [Kembali]

A. Alat

1. Instrument



2. Module 





3. Base station



4. Jumper


B. Bahan


1. resistor


2. Potensiometer




4. Tugas Pendahuluan[Kembali]

A.Resistor

Resistor merupakan komponen penting dan sering dijumpai dalam sirkuit Elektronik. Boleh dikatakan hampir setiap sirkuit Elektronik pasti ada Resistor. Tetapi banyak diantara kita yang bekerja di perusahaan perakitan Elektronik maupun yang menggunakan peralatan Elektronik tersebut tidak mengetahui cara membaca kode warna ataupun kode angka yang ada ditubuh Resistor itu sendiri.

Seperti yang dikatakan sebelumnya, nilai Resistor yang berbentuk Axial adalah diwakili oleh Warna-warna yang terdapat di tubuh (body) Resistor itu sendiri dalam bentuk Gelang. Umumnya terdapat 4 Gelang di tubuh Resistor, tetapi ada juga yang 5 Gelang.

Gelang warna Emas dan Perak biasanya terletak agak jauh dari gelang warna lainnya sebagai tanda gelang terakhir. Gelang Terakhirnya ini juga merupakan nilai toleransi pada nilai Resistor yang bersangkutan.

Tabel dibawah ini adalah warna-warna yang terdapat di Tubuh Resistor :


Tabel Kode Warna Resistor

Perhitungan untuk Resistor dengan 4 Gelang warna :


Cara menghitung nilai resistor 4 gelang

Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan Jumlah nol dari kode warna Gelang ke-3 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut

Contoh :

Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 4 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.

Perhitungan untuk Resistor dengan 5 Gelang warna :



Cara Menghitung Nilai Resistor 5 Gelang Warna

Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)

Masukkan angka langsung dari kode warna Gelang ke-2

Masukkan angka langsung dari kode warna Gelang ke-3

Masukkan Jumlah nol dari kode warna Gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10n)

Merupakan Toleransi dari nilai Resistor tersebut

Contoh :

Gelang ke 1 : Coklat = 1

Gelang ke 2 : Hitam = 0

Gelang ke 3 : Hijau = 5

Gelang ke 4 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105

Gelang ke 5 : Perak = Toleransi 10%

Maka nilai Resistor tersebut adalah 105 * 105 = 10.500.000 Ohm atau 10,5 MOhm dengan toleransi 10%.

Contoh-contoh perhitungan lainnya :

Merah, Merah, Merah, Emas → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm dengan 5% toleransi

Kuning, Ungu, Orange, Perak → 47 * 10³ = 47.000 Ohm atau 47 Kilo Ohm dengan 10% toleransi

Cara menghitung Toleransi :

2.200 Ohm dengan Toleransi 5% =

2200 – 5% = 2.090

2200 + 5% = 2.310

ini artinya nilai Resistor tersebut akan berkisar antara 2.090 Ohm ~ 2.310 Ohm

B. Potensiometer

    Potensiometer merupakan resistor variabel yang nilai resistansinya dapat diubah dengan cara memutar tuasnya untuk mendapatkan variasi arus. Potensiometer biasanya digunakan untuk mengendalikan perangkat elektronik. Salah satu contohnya seperti pengatur volume pada peralatan audio.

       Potensiometer mempunyai 3 terminal, yaitu terminal A, terminal B, dan wiper. Dimana prinsip kerjanya ketika terminal A dan wiper dihubungkan maka nilai resistansinya semakin besar jika tuasnya diputar ke kanan. Ketika terminal B dan wiper dihubungkan maka nilai resistansinya semakin besar jika tuasnya diputar ke kiri. Sedangkan ketika terminal A dan B dihubungkan maka pada potensiometer akan menunjukkan nilai resistansi maksimum. Nilai resistansi  ini akan selalu tetap dan merupakan nilai resistansi total dari potensiometer.


C. Hukum Ohm

Hukum Ohm pada dasarnya adalah hukum yang menjelaskan mengenai kaitan antara tegangan atau beda potensial, arus listrik, serta hambatan di dalam rangkaian listrik. 

Jadi Hukum Ohm ini adalah hukum dasar yang menjelaskan bahwa arus listrik yang mengalir pada suatu penghantar sebanding dengan tegangan yang didapatkannya, tetapi arus berbanding terbalik dengan hambatan. Arus listrik dapat mengalir melalui penghantar disebabkan karena adanya perbedaan tegangan atau beda potensial yang ada di antara dua titik di dalam penghantar. 

Bunyi Hukum Ohm :

Bunyi hukum Ohm yang dipaparkan oleh George Simon Ohm antara lain: 

“Besarnya arus listrik  yang mengalir pada suatu penghantar akan sebanding dengan tegangannya, dalam suhu yang tetap.” 

Dari pernyataan tersebut maka dapat dikatakan bahwa perbandingan antara tegangan dengan arus listrik disebut dengan hambatan.

 

D. Hukum Kirchhoff

Hukum Kirchhoff ditemukan oleh Gustav Robert Kirchhoff yang merupakan ahli fisika asal Jerman. Kirchhoff menjelaskan hukumnya tentang kelistrikan ke dalam dua bagian, yaitu Hukum I Kirchhoff dan Hukum II Kirchhoff. 

Hukum I Kirchhoff

Hukum ini merupakan hukum kekekalan muatan listrik yang menyatakan bahwa jumlah muatan listrik yang mengalir tidaklah berubah. Jadi, pada suatu percabangan, laju muatan listrik yang menuju titik cabang sama besarnya dengan laju muatan yang meninggalkan titik cabang itu. Nah, di fisika, laju muatan listrik adalah kuat arus listrik. Oleh karena itu, bunyi Hukum I Kirchhoff lebih umum ditulis: 

"Jumlah kuat arus listrik yang masuk ke suatu titik cabang akan sama dengan  jumlah kuat arus listrik yang meninggalkan titik itu."

Hukum I Kirchhoff biasa disebut Hukum Arus Kirchhoff atau Kirchhoff’s Current Law (KCL).

besar kuat arus total yang melewati titik percabangan a secara matematis dinyatakan Σ Imasuk = Σ Ikeluar yang besarnya adalah I1 = I2 + I3.

Hukum II Kirchhoff

Hukum ini berlaku pada rangkaian yang tidak bercabang yang digunakan untuk menganalisis beda potensial (tegangan) pada suatu rangkaian tertutup. Hukum II Kirchhoff biasa disebut Hukum Tegangan Kirchhoff atau Kirchhoff’s Voltage Law (KVL). Bunyi Hukum II Kirchhoff adalah:

"Jumlah aljabar beda potensial (tegangan) pada suatu rangkaian tertutup adalah sama dengan nol."

Versi lain Hukum II Kirchhoff, yaitu pada rangkaian tertutup, berbunyi: jumlah aljabar GGL (ε) dan jumlah penurunan tegangan (IR) sama dengan nol. Secara matematis dapat dirumuskan sebagai: Σ ε+Σ IR = 0.

 

E. Voltage & Current Divider

Rangkaian pembagi tegangan

Rangkaian pembagi tegangan adalah suatu rangkaian listrik yang dirancang untuk membagi tegangan input menjadi tegangan yang lebih kecil pada beberapa resistor yang terhubung secara seri atau paralel. Prinsip kerja dari rangkaian pembagi tegangan dapat dijelaskan dengan menggunakan hukum Ohm dan aturan pembagian tegangan Kirchhoff.

Prinsip Kerja Rangkaian Pembagi Tegangan:

Resistansi Total (Rtotal): Rangkaian pembagi tegangan terdiri dari dua atau lebih resistor yang terhubung. Resistansi total dari rangkaian dapat dihitung dengan menggabungkan resistansi-resistansi tersebut sesuai dengan koneksi (seri atau paralel).

Hukum Ohm: Hukum Ohm menyatakan bahwa arus dalam rangkaian sebanding dengan tegangan dan invers sebanding dengan resistansi. Dalam rangkaian pembagi tegangan, hukum Ohm digunakan untuk menghitung arus pada rangkaian.

I = Vin/Rtotal

Aturan Pembagian Tegangan Kirchhoff: Aturan ini menyatakan bahwa dalam suatu simpul (node) dalam suatu rangkaian listrik, jumlah aliran arus menuju simpul tersebut sama dengan jumlah arus yang meninggalkan simpul tersebut. Dalam rangkaian pembagi tegangan, aturan ini diterapkan untuk simpul pada kedua ujung resistor pembagi.

Vin = V1 + V2 + ... + Vn

Dimana V1, V2, ..., Vn adalah tegangan pada masing-masing resistor.

Tegangan Keluaran (Vout): Tegangan keluaran pada titik tertentu diambil dari resistor tertentu dalam rangkaian. Tegangan pada setiap resistor dihitung dengan menggunakan aturan pembagian tegangan Kirchhoff.

Vout = Vin x (Rtarget/Rtotal)

Dimana Rtarget adalah resistansi resistor yang terhubung pada titik keluaran.

Dengan memilih nilai resistansi yang sesuai, rangkaian pembagi tegangan dapat menghasilkan tegangan keluaran yang merupakan fraksi dari tegangan input. 

Rangkaian pembagi arus

Rangkaian pembagi arus menggunakan sifat rangkaian paralel, yaitu jumlah arus yang masuk sama dengan jumlah arus yang keluar dari titik percabangan. Rangkaian pembagi arus membagi arus total yang masuk ke dalam cabang-cabang rangkaian sesuai dengan perbandingan hambatan pada masing-masing cabang. Rumus untuk menghitung arus pada cabang ke-n adalah:

In ​= I × Rn​/Rtotal​​

Dimana In​ adalah arus pada cabang ke-n, I adalah arus total yang masuk, Rtotal​ adalah hambatan pengganti rangkaian paralel, dan Rn​ adalah hambatan pada cabang ke-n.

F. Teorema Mesh

 Gambar 4.3. Rangkaian Arus Mesh

Metode arus Mesh merupakan prosedur langsung untuk menentukan arus pada setiap resistor dengan menggunakan persamaan simultan. Langkah pertamanya adalah membuat loop tertutup (disebut juga mesh) pada rangkaian. Loop tersebut tidak harus memiliki sumber tegangan, tetapi setiap sumber tegangan yang ada harus dimasukkan ke dalam loop. Loop haruslah meliputi seluruh resistor dan sumber tegangan. Dengan arus Mesh, dapat ditulis persamaan Kirchoff’s Voltage Law untuk setiap loop.

G. Teorema Thevenin

Teorema Thevenin merupakan salah satu metode penyelesaian rangkaian listrik kompleks menjadi rangkaian sederhana yang terdiri atas tegangan thevenin dan hambatan thevenin yang terhubung secara seri. Beberapa aturan dalam menetapkan Vth dan Rth, yaitu:

 1.      Vth adalah tegangan yang terlihat melintasi terminal beban. Dimana pada rangkaian asli, beban resistansinya dilepas (open circuit). Jika dilakukan pengukuran, maka diletakkan multimeter pada titik open circuit tersebut.

  2.      Rth adalah resistansi yang terlihat dari terminal pada saat beban dilepas (open circuit) dan sumber tegangan yang dihubung singkat (short circuit).

H. Analisis Nodal

Rangkaian analisis node saling melengkapi dengan rangkaian analisis mesh. Rangkaian analisis node menggunakan hukum Kirchhoff pertama, hukum Kirchhoff saat ini (KCL). Seperti yang kita sebutkan di atas, namanya menyiratkan bahwa kita menggunakan tegangan node dan menggunakannya bersama dengan KCL.

Analisis node mengharuskan kita untuk menghitung tegangan node di setiap node sehubungan dengan tegangan ground (node referensi), maka kita menyebutnya metode node-voltage.

Analisis node didasarkan pada aplikasi sistematis hukum Kirchhoff saat ini (KCL). Dengan teknik ini, kita akan dapat menganalisis rangkaian linier apa pun.

Apa saja yang perlu Anda persiapkan sebelum menggunakan metode ini? Perlu diingat bahwa kita akan mendapatkan persamaan ‘n-1′, di mana n adalah jumlah node termasuk node referensi. Menggunakan metode analisis rangkaian ini berarti kita akan fokus pada tegangan node di rangkaian.

Sifat rangkaian analisis node:

  • Rangkaian analisis node menggunakan hukum arus Kirchhoff (KCL)
  • Untuk node ‘n‘ (termasuk node referensi) akan ada persamaan tegangan node independen ‘n-1′
  • Memecahkan semua persamaan akan memberi kita nilai tegangan node
  • Jumlah node (kecuali node non-referensi) sama dengan jumlah persamaan tegangan node yang bisa kita dapatkan.